

ENCIMAT - Encontros Interdisciplinares de Materiais e Mostra de Materiais

LIGAS LEVES

As ligas leves são materiais metálicos não ferrosos formados pela combinação de metais menos pesados com outros elementos químicos para melhorar suas propriedades mecânicas, como resistência mecânica, ductilidade e resistência à corrosão. O termo "ligas leves" refere-se principalmente àquelas feitas de metais como alumínio, magnésio e titânio, que possuem uma densidade (relação entre a massa e o volume de um material) significativamente menor em comparação a metais como o aço.

Esses materiais são amplamente encontrados em formas de chapas, barras, perfis ou fundidos e em componentes mais complexos, como peças de automóveis, aeronaves, bicicletas e até eletrônicos. A baixa densidade, aliada à boa resistência mecânica, permite o uso das ligas leves em situações em que a redução de peso é crítica, sem comprometer a performance ou a segurança estrutural.

A obtenção dos materiais base para elaboração das ligas leves variam de acordo com o metal utilizado. A seguir estão representados de forma simplificada os processos de obtenção do Alumínio (AI), Magnésio (Mg) e Titânio (Ti).

ALUMÍNIO

O alumínio é extraído principalmente da bauxita, um mineral abundante na natureza. O processo de obtenção do alumínio consiste em triturar e misturar a bauxita com soda cáustica, que dissolve o óxido de alumínio, abandonando as impurezas. Esse óxido de alumínio é então purificado através de processos industriais até obter o alumínio comercial.

Vídeo sugerido: "De onde vem o alumínio?

https://www.youtube.com/watch?v=EirrzjjAf8Y

Saiba mais em: https://abal.org.br/aluminio/cadeia-primaria/

MAGNÉSIO

Fonte: Elaborado pelo autor

TITÂNIO

O titânio é extraído de minerais como o rutilo e a ilmenita. O processo de obtenção envolve alguns passos principais:

Extração: O minério, contendo titânio, é extraído de depósitos naturais por meio de mineração.

Refino: O minério passa por processos químicos, como a cloração, para converter o óxido de titânio em tetracloreto de titânio (TiCl₄).

Redução: O TiCl₄ é então submetido ao processo de redução, geralmente pelo método Kroll, onde é reagido com magnésio ou sódio em altas temperaturas para produzir titânio metálico.

Fusão: O titânio metálico resultante é purificado e fundido em lingotes, que podem ser posteriormente trabalhados em diversas formas, como placas, barras e fios.

Vídeo sugerido: "Processo Kroll e obtenção do titânio"

https://www.youtube.com/watch?v=pwYDpv4P3mc

Como já mencionado, as principais ligas leves são a base de alumínio, magnésio e titânio.

As ligas de alumínio são as mais comuns e possuem uma excelente relação entre resistência e peso, além de apresentar boa resistência à corrosão e alta condutividade térmica e elétrica. Utilizadas em aeronaves, veículos e estruturas leves.

As ligas de magnésio são mais leves que as ligas de alumínio, mas menos resistentes. São usadas em aplicações onde a redução de peso é primordial, como em componentes eletrônicos, painéis automotivos e peças estruturais.

Por fim, as ligas de titânio possuem uma excelente combinação de leveza, resistência mecânica e resistência à corrosão. São mais caras, mas essenciais em indústrias como aeroespacial, biomédica e militar, onde a resistência e a durabilidade são fatores fundamentais.

As ligas leves podem apresentar as seguintes características:

- . Resistência a altas temperaturas: Ligas de titânio suportam bem o calor em motores e aplicações extremas.
- . Facilidade no processamento: Ligas leves são fáceis de fabricar por processos de usinagem e soldagem.
- . Relação resistência/peso: Combinam leveza com alta resistência, ideais para veículos e aeronaves.
- . Resistência ao desgaste: Capacidade de suportar atrito.
- . Resistência à corrosão: Especialmente as ligas de alumínio e titânio, são ideais para ambientes agressivos.
- . Resistência mecânica: Mesmo leves, têm boa resistência, principalmente as ligas de titânio e alumínio.
- . Reciclável: A maioria das ligas leves, especialmente as de alumínio, pode ser facilmente reciclada, sendo uma opção sustentável para a indústria.
- . Ductilidade: Podem ser facilmente conformadas em diferentes formatos.
- . Baixa densidade: São significativamente mais leves que outros metais, como o aço.
- . Condução elétrica: O alumínio é um excelente condutor de eletricidade.
- . Condução térmica: Dissipam o calor rapidamente, evitando superaquecimento.
- . Resistência à fadiga: Alqumas ligas, como as de titânio, resistem bem a esforços repetidos.

	ALUMÍNIO	MAGNÉSIO	TITÂNIO
Temperatura de fusão	660°C	650 °C	1.668 °C
Temperatura de ebulição	2.470 °C	1.091 °C	3.287 °C
Densidade	2,7 g/cm ³	1,738 g/cm ³	4,5 g/ cm ³
Resistência	304 Mpa *	250 Mpa **	686 a 1176 Mpa ***

^{*}Dados da liga Alumínio 6061

Vídeo sugerido: "Fundição motor Ferrari em liga de alumínio"

https://www.youtube.com/watch?v=w7R2dlutwLI

ONDE SOU USADO?

Biocompatibilidade e Alta Relação Resistência/Peso

O titânio é amplamente utilizado em próteses médicas devido à sua biocompatibilidade, ou seja, ele não causa reações adversas no corpo humano. Além disso, é leve, resistente e não corrosivo, o que o torna ideal para implantes ortopédicos, como próteses de quadril e joelho, e implantes dentários. O titânio se integra bem aos ossos através do processo de osseointegração, garantindo durabilidade e estabilidade à prótese.

Prótese de liga de titânio

https://www.biovera.com.br/noticias/investigacao-quimica-de-ligasortopedicas-de-titanio/

Roda de carro de liga de magnésio

https://pt.sushaforgedwheels.com/forged-magnesium-wheels/satin-bronze-forged-magnesium-wheel.html

Baixa densidade e alta resistência mecânica

^{**} Dados da liga Magnésio AZ31B

^{***} Dados de variadas ligas de titânio

Bloco de motor de um veículo em alumínio

https://www.canaldapeca.com.br/blog/processo-fabricacao-domotor-ferrari-v12/

Alta relação resistência / peso e resistência a altas temperaturas

VOCÊ SABIA?

I – Qual a origem do nome Titânio?

O nome Titânio tem origem na mitologia grega. Na mitologia, os Titãs eram uma raça de deuses primordiais que precederam os deuses do Olimpo. Eles eram conhecidos por sua enorme força e poder. O elemento foi nomeado "titânio" em referência a esses deuses devido à sua notável resistência e robustez. Foi o químico alemão Martin Heinrich Klaproth quem descobriu o titânio em 1791 e deu a ele esse nome, destacando suas propriedades impressionantes e durabilidade, que evocavam a força dos mitológicos Titãs.

II – Como são fabricadas as rodas de liga leve?

O processo de fabricação de uma roda de liga leve começa com a fusão do metal, geralmente alumínio ou magnésio, em fornos a altas temperaturas até se transformar em líquido. Em seguida, o metal fundido é vazado em moldes com o formato da roda. Após a moldagem, a roda é resfriada e pode passar por tratamento térmico para melhorar sua resistência.

Em seguida, será usinada. Na etapa de usinagem, a roda é ajustada para obter o formato final, incluindo a remoção de excessos de material e a criação dos furos para parafusos. O produto segue para o acabamento superficial, que envolve polimento, pintura ou revestimento protetor, como verniz, para garantir estética e proteção contra corrosão. Por fim, a roda passa por uma rigorosa inspeção de qualidade, onde são verificadas possíveis falhas e sua conformidade com os padrões de segurança. Esse processo resulta em uma roda leve, resistente e com um acabamento visual atraente.

III – É verdade que as ligas leves, como o alumínio, são frágeis?

Na verdade, as ligas leves, como as de alumínio, podem ser extremamente resistentes! Combinadas com outros metais, elas oferecem alta resistência mecânica e são amplamente usadas em aplicações que exigem durabilidade, como na indústria aeroespacial. Além disso, possuem excelente resistência à corrosão, o que as torna ideais para ambientes agressivos, como o marítimo e o industrial.

Avião modelo Embraer 195 – Fuselagem fabricada com partes em alumínio

https://www.gbnnews.com.br/2010/07/embraer-estuda-novo-jato-para-o-mercado.html

CRÉDITOS

Redação: David Lucas Oliveria Zandona Guimarães

Diagramação: Arthur Ferreira Borges

Revisão Ortográfica: -

Aprovação: Prof. João Bosco dos Santos

Atualização: out/24

FONTES

https://abal.org.br/aluminio/cadeia-primaria/

https://abal.org.br/aluminio/cadeia-primaria/

https://brasilescola.uol.com.br/quimica/titanio.htm

https://crqsp.org.br/elementos-quimicos-

titanio/#:~:text=0%20tit%C3%A2nio%20%C3%A9%20o%20segundo,)%20%5B4%2C6%5D.

https://files.cercomp.ufg.br/weby/up/1201/o/CMEP_V_%E2%80%93_Ligas_met%C3%A1licas.pdf?1630637131

https://images.app.goo.gl/cmEwWnVoiMjsvP4s6

https://pt.sushaforgedwheels.com/forged-magnesium-wheels/satin-bronze-forged-magnesium-wheel.html

https://repositorio.ufscar.br/bitstream/handle/ufscar/16279/Breno%20Augusto%20Batista.pdf?sequence=1

http://www.abenge.org.br/cobenge/legado/arquivos/9/artigos/668.pdf

https://www.biovera.com.br/noticias/investigacao-quimica-de-ligas-ortopedicas-de-titanio/

https://www.britannica.com/technology/magnesium-processing

https://www.canaldapeca.com.br/blog/processo-fabricacao-do-motor-ferrari-v12/

https://www.gbnnews.com.br/2010/07/embraer-estuda-novo-jato-para-o-mercado.html

https://www.magnesium.com.br/

https://www.magnesium.com.br/inauguracao-do-forno-rotativo/

https://www.youtube.com/watch?v=EirrzjjAf8Y

https://www.youtube.com/watch?v=pwYDpv4P3mc

https://www.youtube.com/watch?v=w7R2dlutwLI

